IFN-γ Critically Enables the Intratumoural Infiltration of CXCR3+ CD8+ T Cells to Drive Squamous Cell Carcinoma Regression

Author:

Zeng ZhenORCID,Veitch Margaret,Kelly Gabrielle A.,Tuong Zewen K.ORCID,Cruz Jazmina G.,Frazer Ian H.,Wells James W.ORCID

Abstract

Ultraviolet (UV) radiation-induced tumours carry a high mutational load, are highly immunogenic, and often fail to grow when transplanted into normal, syngeneic mice. The aim of this study was to investigate factors critical for the immune-mediated rejection of cutaneous squamous cell carcinoma (SCC). In our rejection model, transplanted SCC establish and grow in mice immunosuppressed with tacrolimus. When tacrolimus is withdrawn, established SCC tumours subsequently undergo immune-mediated tumour rejection. Through the depletion of individual immune subsets at the time of tacrolimus withdrawal, we established a critical role for CD8+ T cells, but not CD4+ T cells, γδ T cells, or NK cells, in driving the regression of SCC. Regression was critically dependent on IFN-γ, although IFN-γ was not directly cytotoxic to SCC cells. IFN-γ-neutralisation abrogated SCC regression, significantly reduced CD8+ T cell-infiltration into SCC, and significantly impaired the secretion of CXCL9, CXCL10 and CCL5 within the tumour microenvironment. A strong positive correlation was revealed between CXCL10 expression and CD8+ T cell abundance in tumours. Indeed, blockade of the CXCL10 receptor CXCR3 at the time of tacrolimus withdrawal prevented CD8+ T cell infiltration and the regression of SCC. Chimeric models revealed an important role for immune cells as producers of IFN-γ, but not as recipients of IFN-γ signals via the IFN-γ receptor. Together, these findings suggest a key role for IFN-γ in driving the expression of chemokines within the tumour environment essential for the destruction of established SCC by CD8+ T cells.

Funder

Cancer Council Queensland

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3