Radiotherapy with Helium Ions Has the Potential to Improve Both Endocrine and Neurocognitive Outcome in Pediatric Patients with Ependymoma

Author:

Wickert Ricarda,Tessonnier Thomas,Deng Maximilian,Adeberg SebastianORCID,Seidensaal Katharina,Hoeltgen Line,Debus Jürgen,Herfarth Klaus,Harrabi Semi B.

Abstract

Ependymomas are the third most-frequent pediatric brain tumors. To prevent local recurrence, the resection site should be irradiated. Compared to photon radiation treatment, proton therapy often achieves even better results regarding target coverage and organ-sparing. Due to their physical properties, helium ions could further reduce side effects, providing better protection of healthy tissue despite similar target coverage. In our in silico study, 15 pediatric ependymoma patients were considered. All patients underwent adjuvant radiotherapeutic treatment with active-scanned protons at Heidelberg Ion Beam Therapy Center (HIT). Both helium ion and highly conformal IMRT plans were calculated to evaluate the potential dosimetric advantage of ion beam therapy compared to the current state-of-the-art photon-based treatments. To estimate the potential clinical benefit of helium ions, normal tissue complication probabilities (NTCP) were calculated. Target coverage was comparable in all three modalities. As expected, the integral dose absorbed by healthy brain tissue could be significantly reduced with protons by up to −48% vs. IMRT. Even compared to actively scanned protons, relative dose reductions for critical neuronal structures of up to another −39% were achieved when using helium ions. The dose distribution of helium ions is significantly superior when compared to proton therapy and IMRT due to the improved sparing of OAR. In fact, previous studies could clearly demonstrate that the dosimetric advantage of protons translates into a measurable clinical benefit for pediatric patients with brain tumors. Given the dose–response relationship of critical organs at risk combined with NTCP calculation, the results of our study provide a strong rationale that the use of helium ions has the potential to even further reduce the risk for treatment related sequelae.

Funder

Dietmar Hopp Stiftung

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3