The Immunocytokine FAP-IL-2v Enhances Anti-Neuroblastoma Efficacy of the Anti-GD2 Antibody Dinutuximab Beta

Author:

Siebert Nikolai,Leopold Justus,Zumpe MaxiORCID,Troschke-Meurer SaschaORCID,Biskupski Simon,Zikoridse Alexander,Lode Holger N.ORCID

Abstract

Treatment of high-risk neuroblastoma (NB) patients with the anti-GD2 antibody (Ab) dinutuximab beta (DB) improves survival by 15%. Ab-dependent cellular cytotoxicity (ADCC) is the major mechanism of action and is primarily mediated by NK cells. Since IL-2 co-treatment did not show a therapeutic benefit but strongly induced Treg, we investigated here a DB-based immunotherapy combined with the immunocytokine FAP-IL-2v, which comprises a fibroblast activation protein α (FAP)-specific Ab linked to a mutated IL-2 variant (IL-2v) with abolished binding to the high-affinity IL-2 receptor, thus stimulating NK cells without induction of Treg. Effects of FAP-IL-2v on NK cells, Treg and ADCC mediated by DB, as well as FAP expression in NB, were investigated by flow cytometry, calcein-AM-based cytotoxicity assay and RT-PCR analysis. Moreover, the impact of soluble factors released from tumor cells on FAP expression by primary fibroblasts was assessed. Finally, a combined immunotherapy with DB and FAP-IL-2v was evaluated using a resistant syngeneic murine NB model. Incubation of leukocytes with FAP-IL-2v enhanced DB-specific ADCC without induction of Treg. FAP expression on NB cells and myeloid-derived suppressor cells (MDCS) in tumor tissue was identified. A tumor-cell-dependent enhancement in FAP expression by primary fibroblasts was demonstrated. Combination with DB and FAP-IL-2v resulted in reduced tumor growth and improved survival. Analysis of tumor tissue revealed increased NK and cytotoxic T cell numbers and reduced Treg compared to controls. Our data show that FAP-IL-2v is a potent immunocytokine that augments the efficacy of DB against NB, providing a promising alternative to IL-2.

Funder

Greifswald University Hospital

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3