Genomic, Transcriptomic, and Functional Alterations in DNA Damage Response Pathways as Putative Biomarkers of Chemotherapy Response in Ovarian Cancer

Author:

Sharma Saha SwetaORCID,Gentles Lucy,Bradbury Alice,Brecht DominikORCID,Robinson Rebecca,O’Donnell Rachel,Curtin Nicola J.ORCID,Drew Yvette

Abstract

Defective DNA damage response (DDR) pathways are enabling characteristics of cancers that not only can be exploited to specifically target cancer cells but also can predict chemotherapy response. Defective Homologous Recombination Repair (HRR) function, e.g., due to BRCA1/2 loss, is a determinant of response to platinum agents and PARP inhibitors in ovarian cancers. Most chemotherapies function by either inducing DNA damage or impacting on its repair but are generally used in the clinic unselectively. The significance of HRR and other DDR pathways in determining response to several other chemotherapy drugs is not well understood. In this study, the genomic, transcriptomic and functional analysis of DDR pathways in a panel of 14 ovarian cancer cell lines identified that defects in DDR pathways could determine response to several chemotherapy drugs. Carboplatin, rucaparib, and topotecan sensitivity were associated with functional loss of HRR (validated in 10 patient-derived primary cultures) and mismatch repair. Two DDR gene expression clusters correlating with treatment response were identified, with PARP10 identified as a novel marker of platinum response, which was confirmed in The Cancer Genome Atlas (TCGA) ovarian cancer cohort. Reduced non-homologous end-joining function correlated with increased sensitivity to doxorubicin, while cells with high intrinsic oxidative stress showed sensitivity to gemcitabine. In this era of personalised medicine, molecular/functional characterisation of DDR pathways could guide chemotherapy choices in the clinic allowing specific targeting of ovarian cancers.

Funder

Newcastle upon Tyne Hospitals NHS Foundation Trust

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3