The Microtubule Destabilizer Eribulin Synergizes with STING Agonists to Promote Antitumor Efficacy in Triple-Negative Breast Cancer Models

Author:

Takahashi-Ruiz LeilaORCID,Fermaintt Charles S.ORCID,Wilkinson Nancy J.,Chan Peter Y. W.ORCID,Mooberry Susan L.ORCID,Risinger April L.ORCID

Abstract

Eribulin is a microtubule destabilizer used in the treatment of triple-negative breast cancer (TNBC). Eribulin and other microtubule targeted drugs, such as the taxanes, have shared antimitotic effects, but differ in their mechanism of microtubule disruption, leading to diverse effects on cellular signaling and trafficking. Herein, we demonstrate that eribulin is unique from paclitaxel in its ability to enhance expression of the immunogenic cytokine interferon beta (IFNβ) in combination with STING agonists in both immune cells and TNBC models, including profound synergism with ADU-S100 and E7766, which are currently undergoing clinical trials. The mechanism by which eribulin enhances STING signaling is downstream of microtubule disruption and independent of the eribulin-dependent release of mitochondrial DNA. Eribulin did not override the requirement of ER exit for STING activation and did not inhibit subsequent STING degradation; however, eribulin significantly enhanced IRF3 phosphorylation and IFNβ production downstream of the RNA sensing pathway that converges on this transcription factor. Additionally, we found that eribulin enhanced the population of activated CD4+ T-cells in vivo when combined with either a STING agonist or tumor, demonstrating the ability to function as an immune adjuvant. We further interrogated the combination of eribulin with ADU-S100 in the MMTV-PyVT spontaneous murine mammary tumor model where we observed significant antitumor efficacy with combination treatment. Together, our findings demonstrate that microtubule targeted chemotherapeutics have distinct immunological effects and that eribulin’s ability to enhance innate immune sensing pathways supports its use in combination with immunotherapies, such as STING agonists, for the more effective treatment of TNBC and other malignancies.

Funder

Eisai Inc

National Institutes of Health

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3