Circulating microRNAs in Cerebrospinal Fluid and Plasma: Sensitive Tool for Detection of Secondary CNS Involvement, Monitoring of Therapy and Prediction of CNS Relapse in Aggressive B-NHL Lymphomas

Author:

Krsmanovic PavleORCID,Mocikova Heidi,Chramostova Kamila,Klanova Magdalena,Trnkova Marie,Pesta MichalORCID,Laslo Peter,Pytlik Robert,Stopka Tomas,Trneny Marek,Pospisil Vit

Abstract

Lymphoma with secondary central nervous system (CNS) involvement represents one of the most aggressive malignancies, with poor prognosis and high mortality. New diagnostic tools for its early detection, response evaluation, and CNS relapse prediction are needed. We analyzed circulating microRNAs in the cerebrospinal fluid (CSF) and plasma of 162 patients with aggressive B-cell non-Hodgkin’s lymphomas (B-NHL) and compared their levels in CNS-involving lymphomas versus in systemic lymphomas, at diagnosis and during treatment and CNS relapse. We identified a set of five oncogenic microRNAs (miR-19a, miR-20a, miR-21, miR-92a, and miR-155) in CSF that detect, with high sensitivity, secondary CNS lymphoma involvement in aggressive B-NHL, including DLBCL, MCL, and Burkitt lymphoma. Their combination into an oncomiR index enables the separation of CNS lymphomas from systemic lymphomas or nonmalignant controls with high sensitivity and specificity, and high Receiver Operating Characteristics (DLBCL AUC = 0.96, MCL = 0.93, BL = 1.0). Longitudinal analysis showed that oncomiR levels reflect treatment efficacy and clinical outcomes, allowing their monitoring and prediction. In contrast to conventional methods, CSF oncomiRs enable detection of early and residual CNS involvement, as well as parenchymal involvement. These circulating oncomiRs increase 1–4 months before CNS relapse, allowing its early detection and improving the prediction of CNS relapse risk in DLBCL. Similar effects were detectable, to a lesser extent, in plasma.

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3