RGD-Coated Polymer Nanoworms for Enriching Cancer Stem Cells

Author:

Gu Yushu,Bobrin Valentin,Zhang Dayong,Sun Bing,Ng Chun Ki,Chen Sung-Po R.ORCID,Gu WenyiORCID,Monteiro Michael J.

Abstract

Cancer stem cells (CSCs) are primarily responsible for tumour drug resistance and metastasis; thus, targeting CSCs can be a promising approach to stop cancer recurrence. However, CSCs are small in numbers and readily differentiate into matured cancer cells, making the study of their biological features, including therapeutic targets, difficult. The use of three-dimensional (3D) culture systems to enrich CSCs has some limitations, including low sphere forming efficiency, enzymatic digestion that may damage surface proteins, and more importantly no means to sustain the stem properties. A responsive 3D polymer extracellular matrix (ECM) system coated with RGD was used to enrich CSCs, sustain stemness and avoid enzymatic dissociation. RGD was used as a targeting motif and a ligand to bind integrin receptors. We found that the system was able to increase sphere forming efficiency, promote the growth of spheric cells, and maintain stemness-associated properties compared to the current 3D culture. We showed that continuous culture for three generations of colon tumour spheroid led to the stem marker CD24 gradually increasing. Furthermore, the new system could enhance the cancer cell sphere forming ability for the difficult triple negative breast cancer cells, MBA-MD-231. The key stem gene expression for colon cancer also increased with the new system. Further studies indicated that the concentration of RGD, especially at high doses, could inhibit stemness. Taken together, our data demonstrate that our RGD-based ECM system can facilitate the enrichment of CSCs and now allow for the investigation of new therapeutic approaches for colorectal cancer or other cancers.

Funder

Australia Research Council Discovery Project

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3