Topical 2′-Hydroxyflavanone for Cutaneous Melanoma

Author:

Bose ,Singh ,Igid ,Green ,Singhal ,Lee ,Palade ,Rajan ,Ball ,Tonk ,Hindle ,Tarbox ,Awasthi

Abstract

2′-hydroxyflavanone (2HF) is a dietary flavonoid with anticancer activity towardsmultiple cancers. Here, we report that topically applied 2HF inhibits the growth of intradermalimplants of melanoma in immunocompetent mice. 2HF induced apoptosis and inhibited the growthof the human SK-MEL-24 as well as murine B16-F0 and B16-F10 melanoma cell lines in vitro.Apoptosis was associated with depletion of caspase-3, caspase-9, and PARP1 in B16-F0 and SKMEL-24 cells. Caspase-9 and MEKK-15 were undetected even in untreated B16-F10 cells. Signalingproteins TNFα, and phospho-PDGFR-β were depleted in all three cell lines; MEKK-15 was depletedby 2HF in SK-MEL-24 cells. 2HF enhanced sunitinib (an MEK and PDGFR-β inhibitor) and AZD2461 (a PARP1 inhibitor) cytotoxicity. 2HF also depleted the Ral-regulated, stress-responsive,antiapoptotic endocytic protein RLIP76 (RALBP1), the inhibition of which has previously beenshown to inhibit B16-F0 melanoma growth in vivo. Functional inhibition of RLIP76 was evidentfrom inhibition of epidermal growth factor (EGF) endocytosis by 2HF. We found that topicallyapplied 2HF–Pluronic Lecithin Organogel (PLO) gel inhibited B16-F0 and B16-F10 tumorsimplanted in mice and caused no overt toxicity despite significant systemic absorption. 2HFtreatment reduced phospho-AKT, vimentin, fibronectin, CDK4, cyclinB1, and BCL2, whereas itincreased BIM and phospho-AMPK in excised tumors. Several cancer signals are controlled byendocytosis, a process strongly inhibited by RLIP76 depletion. We conclude that 2HF–PLO gel maybe useful for topical therapy of cutaneous metastases of melanoma and could enhance theantineoplastic effects of sunitinib and PARP1 inhibitors. The mechanism of action of 2HF inmelanoma overlaps with RLI76 inhibitors.

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3