Integrated Biomarker Analysis Reveals L1CAM as a Potential Stratification Marker for No Specific Molecular Profile High-Risk Endometrial Carcinoma

Author:

Ravaggi AntonellaORCID,Capoferri DavideORCID,Ardighieri LauraORCID,Ghini Iacopo,Ferrari Federico,Romani ChiaraORCID,Bugatti Mattia,Zanotti Laura,Vrede Stephanie,Tognon Germana,Pijnenborg Johanna M. A.ORCID,Sartori Enrico,Calza StefanoORCID,Bignotti ElianaORCID,Odicino FrancoORCID

Abstract

Histopathologic assessment of high-risk endometrial cancer (EC) suffers from intersubject variability and poor reproducibility. The pragmatic classification in four molecular subgroups helps to overcome these limits, showing a significant prognostic value. The “no specific molecular profile” (NSMP) is the most heterogeneous EC subgroup, requiring further characterization to better guide its clinical management. DNA sequencing of POLE exonuclease domain and immunohistochemistry for PMS2, MSH6, and p53 were performed in order to stratify a cohort of 94 high-risk EC patients in the four molecular subgroups. Moreover, a panel of seven additional biomarkers was tested. Patients were found to be 16% POLE-mutated, 36% mismatch repair-deficient, 27% p53-abnormal, and 21% NSMP. In the multivariable model, molecular groups confirmed their significant association with disease-specific survival and progression-free survival, with p53-abnormal and NSMP endometrial cancer characterized by poor outcomes. Among the additional evaluated biomarkers, L1CAM was the only one with a significant prognostic value within the NSMP subgroup. NSMP/L1CAM-positive patients experienced the worst outcome and were “early-relapsing” after platinum-based chemotherapy, with a significantly shorter platinum-free interval compared to L1CAM-negative patients. L1CAM appears to be a promising candidate as a prognostic and predictive biomarker in the high-risk NSMP subgroup, which is actually known to lack specific molecular markers.

Funder

Chiara Andreoli Foundation

Ministry of Education, Universities and Research

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3