Epiploic Adipose Tissue (EPAT) in Obese Individuals Promotes Colonic Tumorigenesis: A Novel Model for EPAT-Dependent Colorectal Cancer Progression

Author:

Iftikhar Rida1,Snarski Patricia1ORCID,King Angelle N.1,Ghimire Jenisha1ORCID,Ruiz Emmanuelle1,Lau Frank2,Savkovic Suzana D.1

Affiliation:

1. Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA

2. Department of Surgery, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA

Abstract

The obesity epidemic is associated with increased colorectal cancer (CRC) risk and progression, the mechanisms of which remain unclear. In obese individuals, hypertrophic epiploic adipose tissue (EPAT), attached to the colon, has unique characteristics compared to other fats. We hypothesized that this understudied fat could serve as a tumor-promoting tissue and developed a novel microphysiological system (MPS) for human EPAT-dependent colorectal cancer (CRC-MPS). In CRC-MPS, obese EPAT, unlike lean EPAT, considerably attracted colon cancer HT29-GFP cells and enhanced their growth. Conditioned media (CM) from the obese CRC-MPS significantly increased the growth and migration of HT29 and HCT116 cells (p < 0.001). In HT29 cells, CM stimulated differential gene expression (hOEC867) linked to cancer, tumor morphology, and metabolism similar to those in the colon of high-fat-diet obese mice. The hOEC867 signature represented pathways found in human colon cancer. In unsupervised clustering, hOEC867 separated transcriptomes of colon cancer samples from normal with high significance (PCA, p = 9.6 × 10−11). These genes, validated in CM-treated HT29 cells (p < 0.05), regulate the cell cycle, cancer stem cells, methylation, and metastasis, and are similarly altered in human colon cancer (TCGA). These findings highlight a tumor-promoting role of EPAT in CRC facilitated with obesity and establishes a platform to explore critical mechanisms and develop effective treatments.

Funder

NIH

Crohn’s & Colitis Foundation

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3