Affiliation:
1. Department of Bioengineering, Santa Clara University, Santa Clara, CA 95053, USA
Abstract
Given the key role of cell migration in cancer metastasis, there is a critical need for in vitro models that better capture the complexities of in vivo cancer cell microenvironments. Using both two-dimensional (2D) and three-dimensional (3D) culture models, recent research has demonstrated the role of both matrix and ligand densities in cell migration. Here, we leveraged our previously developed 2.5D sandwich culture platform to foster a greater understanding of the adhesion-dependent migration of glioblastoma cells with a stiffness gradient. Using this model, we demonstrated the differential role of stiffness gradients in migration in the presence and absence of adhesion moieties. Furthermore, we observed a positive correlation between the density of cell adhesion moieties and migration, and a diminished role of stiffness gradients at higher densities of adhesion moieties. These results, i.e., the reduced impact of stiffness gradients on adhesion-dependent migration relative to adhesion-independent migration, were confirmed using inhibitors of both mechanotransduction and cell adhesion. Taken together, our work demonstrates the utility of sandwich culture platforms that present stiffness gradients to study both adhesion-dependent and -independent cell migration and to help expand the existing portfolio of in vitro models of cancer metastasis.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献