The Role of GDF15 in Regulating the Canonical Pathways of the Tumor Microenvironment in Wild-Type p53 Ovarian Tumor and Its Response to Chemotherapy

Author:

Izaguirre Daisy I.,Ng Chun-WaiORCID,Kwan Suet-Yan,Kun Eucharist H.,Tsang Yvonne T. M.,Gershenson David M.,Wong Kwong-KwokORCID

Abstract

Background: The standard treatment of ovarian cancer is surgery followed by a chemotherapeutic combination consisting of a platinum agent, such as cisplatin and a taxane-like paclitaxel. We previously observed that patients with ovarian cancer wild-type for p53 had a poorer survival rate than did those with p53 mutations. Thus, a better understanding of the molecular changes of epithelial ovarian cancer cells with wild-type p53 in response to treatment with cisplatin could reveal novel mechanisms of chemoresistance. Methods: Gene expression profiling was performed on an ovarian cancer cell line A2780 with wild-type p53 treated with cisplatin. A gene encoding a secretory protein growth differentiation factor 15 (GDF15) was identified to be highly induced by cisplatin treatment in vitro. This was further validated in a panel of wild-type and mutant p53 ovarian cancer cell lines, as well as in mouse orthotopic models. The mouse tumor tissues were further analyzed by histology and RNA-seq. Results: GDF15 was identified as one of the highly induced genes by cisplatin or carboplatin in ovarian cancer cell lines with wild-type p53. The wild-type p53-induced expression of GDF15 and GDF15-confered chemotherapy resistance was further demonstrated in vitro and in vivo. This study also discovered that GDF15-knockdown (GDF15-KD) tumors had less stromal component and had different repertoires of activated and inhibited canonical pathways in the stromal cell and cancer cell components from that of the control tumors after cisplatin treatment. Conclusions: GDF15 expression from the wild-type p53 cancer cells can modulate the canonical pathways in the tumor microenvironment in response to cisplatin, which is a possible mechanism of chemoresistance.

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3