Chaotic Sparrow Search Algorithm with Deep Transfer Learning Enabled Breast Cancer Classification on Histopathological Images

Author:

Shankar K.ORCID,Dutta Ashit Kumar,Kumar SachinORCID,Joshi Gyanendra PrasadORCID,Doo Ill ChulORCID

Abstract

Breast cancer is the major cause behind the death of women worldwide and is responsible for several deaths each year. Even though there are several means to identify breast cancer, histopathological diagnosis is now considered the gold standard in the diagnosis of cancer. However, the difficulty of histopathological image and the rapid rise in workload render this process time-consuming, and the outcomes might be subjected to pathologists’ subjectivity. Hence, the development of a precise and automatic histopathological image analysis method is essential for the field. Recently, the deep learning method for breast cancer pathological image classification has made significant progress, which has become mainstream in this field. This study introduces a novel chaotic sparrow search algorithm with a deep transfer learning-enabled breast cancer classification (CSSADTL-BCC) model on histopathological images. The presented CSSADTL-BCC model mainly focused on the recognition and classification of breast cancer. To accomplish this, the CSSADTL-BCC model primarily applies the Gaussian filtering (GF) approach to eradicate the occurrence of noise. In addition, a MixNet-based feature extraction model is employed to generate a useful set of feature vectors. Moreover, a stacked gated recurrent unit (SGRU) classification approach is exploited to allot class labels. Furthermore, CSSA is applied to optimally modify the hyperparameters involved in the SGRU model. None of the earlier works have utilized the hyperparameter-tuned SGRU model for breast cancer classification on HIs. The design of the CSSA for optimal hyperparameter tuning of the SGRU model demonstrates the novelty of the work. The performance validation of the CSSADTL-BCC model is tested by a benchmark dataset, and the results reported the superior execution of the CSSADTL-BCC model over recent state-of-the-art approaches.

Funder

Hankuk University of Foreign Studies

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3