Prediction of Microscopic Metastases in Patients with Metachronous Oligo-Metastases after Curative Treatment of Non-Small Cell Lung Cancer: A Microsimulation Study

Author:

Wolff Henri B.ORCID,Alberts LeonieORCID,Kastelijn Elisabeth A.,Verstegen Naomi E.,El Sharouni Sherif Y.,Schramel Franz M. N. H.,Vos Rein,Coupé Veerle M. H.ORCID

Abstract

Metachronous oligo-metastatic disease is variably defined as one to five metastases detected after a disease-free interval and treatment of the primary tumour with curative intent. Oligo-metastases in non-small cell lung cancer (NSCLC) are often treated with curative intent. However additional metastases are often detected later in time, and the 5-year survival is low. Burdensome surgical treatment in patients with undetected metastases may be avoided if patients with a high versus low risk of undetected metastases can be separated. Because there is no clinical data on undetected metastases available, a microsimulation model of the development and detection of metastases in 100,000 hypothetical stage I NSCLC patients with a controlled primary tumour was constructed. The model uses data from the literature as well as patient-level data. Calibration was used for the unobservable model parameters. Metastases can be detected by a scheduled scan, or an unplanned scan when the patient develops symptoms. The observable information at time of detection is used to identify subgroups of patients with a different risk of undetectable metastases. We identified the size and number of detected oligo-metastases, as well as the presence of symptoms that are the most important risk predictors. Based on these predictors, patients could be divided into a low-risk and a high-risk group, having a model-based predicted probability of 8.1% and 89.3% to have undetected metastases, respectively. Currently, the model is based on a synthesis of the literature data and individual patient-level data that were not collected for the purpose of this study. Optimization and validation of the model is necessary to allow clinical usability. We describe the type of data that needs to be collected to update our model, as well as the design of such a validation study.

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3