Prognostication in Advanced Cancer by Combining Actigraphy-Derived Rest-Activity and Sleep Parameters with Routine Clinical Data: An Exploratory Machine Learning Study

Author:

Patel Shuchita Dhwiren,Davies AndrewORCID,Laing Emma,Wu Huihai,Mendis Jeewaka,Dijk Derk-JanORCID

Abstract

Survival prediction is integral to oncology and palliative care, yet robust prognostic models remain elusive. We assessed the feasibility of combining actigraphy, sleep diary data, and routine clinical parameters to prognosticate. Fifty adult outpatients with advanced cancer and estimated prognosis of <1 year were recruited. Patients were required to wear an Actiwatch® (wrist actigraph) for 8 days, and complete a sleep diary. Univariate and regularised multivariate regression methods were used to identify predictors from 66 variables and construct predictive models of survival. A total of 49 patients completed the study, and 34 patients died within 1 year. Forty-two patients had disrupted rest-activity rhythms (dichotomy index (I < O ≤ 97.5%) but I < O did not have prognostic value in univariate analyses. The Lasso regularised derived algorithm was optimal and able to differentiate participants with shorter/longer survival (log rank p < 0.0001). Predictors associated with increased survival time were: time of awakening sleep efficiency, subjective sleep quality, clinician’s estimate of survival and global health status score, and haemoglobin. A shorter survival time was associated with self-reported sleep disturbance, neutrophil count, serum urea, creatinine, and C-reactive protein. Applying machine learning to actigraphy and sleep data combined with routine clinical data is a promising approach for the development of prognostic tools.

Funder

Palliative Care Research Fund

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3