The Cardiac Glycoside Deslanoside Exerts Anticancer Activity in Prostate Cancer Cells by Modulating Multiple Signaling Pathways

Author:

Liu Mingcheng,Huang Qingqing,A Jun,Li Linyue,Li Xiawei,Zhang ZhiqianORCID,Dong Jin-TangORCID

Abstract

Prostate cancer (PCa) is a leading cause of cancer-related deaths among men worldwide, and novel therapies for advanced PCa are urgently needed. Cardiac glycosides represent an attractive group of candidates for anticancer repurposing, but the cardiac glycoside deslanoside has not been tested for potential anticancer activity so far. We found that deslanoside effectively inhibited colony formation in vitro and tumor growth in nude mice of PCa cell lines 22Rv1, PC-3, and DU 145. Such an anticancer activity was mediated by both the cell cycle arrest at G2/M and the induction of apoptosis, as demonstrated by different functional assays and the expression status of regulatory proteins of cell cycle and apoptosis in cultured cells. Moreover, deslanoside suppressed the invasion and migration of PCa cell lines. Genome-wide expression profiling and bioinformatic analyses revealed that 130 genes were either upregulated or downregulated by deslanoside in both 22Rv1 and PC-3 cell lines. These genes enriched multiple cellular processes, such as response to steroid hormones, regulation of lipid metabolism, epithelial cell proliferation and its regulation, and negative regulation of cell migration. They also enriched multiple signaling pathways, such as necroptosis, MAPK, NOD-like receptor, and focal adhesion. Survival analyses of the 130 genes in the TCGA PCa database revealed that 10 of the deslanoside-downregulated genes (ITG2B, CNIH2, FBF1, PABPC1L, MMP11, DUSP9, TMEM121, SOX18, CMPK2, and MAMDC4) inversely correlated, while one deslanoside-upregulated gene (RASD1) positively correlated, with disease-free survival in PCa patients. In addition, one deslanoside-downregulated gene (ENG) inversely correlated, while three upregulated genes (JUN, MXD1, and AQP3) positively correlated with overall survival in PCa patients. Some of the 15 genes have not been implicated in cancer before. These findings provide another candidate for repurposing cardiac glycosides for anticancer drugs. They also suggest that a diverse range of molecular events underlie deslanoside’s anticancer activity in PCa cells.

Funder

Science, Technology and Innovation Commission of Shenzhen Municipality

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3