Targeting of Glucose Transport and the NAD Pathway in Neuroendocrine Tumor (NET) Cells Reveals New Treatment Options

Author:

Winter Jochen1ORCID,Kunze Rudolf2,Veit Nadine2,Kuerpig Stefan3,Meisenheimer Michael3,Kraus Dominik4,Glassmann Alexander5ORCID,Probstmeier Rainer2

Affiliation:

1. Oral Cell Biology Group, Department of Periodontology, Operative and Preventive Dentistry, University Hospital, Medical Faculty, University of Bonn, Welschnonnenstr. 17, 53111 Bonn, Germany

2. Neuro- and Tumor Cell Biology Group, Department of Nuclear Medicine, University Hospital, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany

3. Department of Nuclear Medicine, University Hospital, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany

4. Department of Prosthodontics, Preclinical Education, and Material Sciences, University Hospital, Medical Faculty, University of Bonn, Welschnonnenstr. 17, 53111 Bonn, Germany

5. Department of Immunology and Cell Biology, University of Applied Science Bonn-Rhein-Sieg, Campus Rheinbach, von-Liebig-Str. 20, 53359 Rheinbach, Germany

Abstract

(1) Background: the potency of drugs that interfere with glucose metabolism, i.e., glucose transporters (GLUT) and nicotinamide phosphoribosyltransferase (NAMPT) was analyzed in neuroendocrine tumor (NET, BON-1, and QPG-1 cells) and small cell lung cancer (SCLC, GLC-2, and GLC-36 cells) tumor cell lines. (2) Methods: the proliferation and survival rate of tumor cells was significantly affected by the GLUT-inhibitors fasentin and WZB1127, as well as by the NAMPT inhibitors GMX1778 and STF-31. (3) Results: none of the NET cell lines that were treated with NAMPT inhibitors could be rescued with nicotinic acid (usage of the Preiss–Handler salvage pathway), although NAPRT expression could be detected in two NET cell lines. We finally analyzed the specificity of GMX1778 and STF-31 in NET cells in glucose uptake experiments. As previously shown for STF-31 in a panel NET-excluding tumor cell lines, both drugs specifically inhibited glucose uptake at higher (50 μM), but not at lower (5 μM) concentrations. (4) Conclusions: our data suggest that GLUT and especially NAMPT inhibitors are potential candidates for the treatment of NET tumors.

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3