Exploring Volatile Organic Compounds in Breath for High-Accuracy Prediction of Lung Cancer

Author:

Tsou Ping-HsienORCID,Lin Zong-Lin,Pan Yu-Chiang,Yang Hui-Chen,Chang Chien-Jen,Liang Sheng-Kai,Wen Yueh-Feng,Chang Chia-HaoORCID,Chang Lih-YuORCID,Yu Kai-Lun,Liu Chia-Jung,Keng Li-Ta,Lee Meng-RuiORCID,Ko Jen-Chung,Huang Guan-HuaORCID,Li Yaw-Kuen

Abstract

(1) Background: Lung cancer is silent in its early stages and fatal in its advanced stages. The current examinations for lung cancer are usually based on imaging. Conventional chest X-rays lack accuracy, and chest computed tomography (CT) is associated with radiation exposure and cost, limiting screening effectiveness. Breathomics, a noninvasive strategy, has recently been studied extensively. Volatile organic compounds (VOCs) derived from human breath can reflect metabolic changes caused by diseases and possibly serve as biomarkers of lung cancer. (2) Methods: The selected ion flow tube mass spectrometry (SIFT-MS) technique was used to quantitatively analyze 116 VOCs in breath samples from 148 patients with histologically confirmed lung cancers and 168 healthy volunteers. We used eXtreme Gradient Boosting (XGBoost), a machine learning method, to build a model for predicting lung cancer occurrence based on quantitative VOC measurements. (3) Results: The proposed prediction model achieved better performance than other previous approaches, with an accuracy, sensitivity, specificity, and area under the curve (AUC) of 0.89, 0.82, 0.94, and 0.95, respectively. When we further adjusted the confounding effect of environmental VOCs on the relationship between participants’ exhaled VOCs and lung cancer occurrence, our model was improved to reach 0.92 accuracy, 0.96 sensitivity, 0.88 specificity, and 0.98 AUC. (4) Conclusion: A quantitative VOCs databank integrated with the application of an XGBoost classifier provides a persuasive platform for lung cancer prediction.

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3