Expression of Phosphorylated BRD4 Is Markedly Associated with the Activation Status of the PP2A Pathway and Shows a Strong Prognostic Value in Triple Negative Breast Cancer Patients

Author:

Sanz-Álvarez Marta,Cristóbal IonORCID,Luque Melani,Santos Andrea,Zazo Sandra,Madoz-Gúrpide Juan,Caramés CristinaORCID,Chiang Cheng-Ming,García-Foncillas Jesús,Eroles Pilar,Albanell Joan,Rojo Federico

Abstract

The bromodomain-containing protein 4 (BRD4), a member of the bromodomain and extra-terminal domain (BET) protein family, has emerged in the last years as a promising molecular target in many tumors including breast cancer. The triple negative breast cancer (TNBC) represents the molecular subtype with the worst prognosis and a current therapeutic challenge, and TNBC cells have been reported to show a preferential sensitivity to BET inhibitors. Interestingly, BRD4 phosphorylation (pBRD4) was found as an alteration that confers resistance to BET inhibition and PP2A proposed as the phosphatase responsible to regulate pBRD4 levels. However, the potential clinical significance of pBRD4, as well as its potential correlation with the PP2A pathway in TNBC, remains to be investigated. Here, we evaluated the expression levels of pBRD4 in a series of 132 TNBC patients. We found high pBRD4 levels in 34.1% of cases (45/132), and this alteration was found to be associated with the development of patient recurrences (p = 0.007). Interestingly, BRD4 hyperphosphorylation predicted significantly shorter overall (p < 0.001) and event-free survival (p < 0.001). Moreover, multivariate analyses were performed to confirm its independent prognostic impact in our cohort. In conclusion, our findings show that BRD4 hyperphosphorylation is an alteration associated with PP2A inhibition that defines a subgroup of TNBC patients with unfavorable prognosis, suggesting the potential clinical and therapeutic usefulness of the PP2A/BRD4 axis as a novel molecular target to overcome resistance to treatments based on BRD4 inhibition.

Funder

Instituto de Salud Carlos III FEDER

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3