PT-112 Induces Mitochondrial Stress and Immunogenic Cell Death, Targeting Tumor Cells with Mitochondrial Deficiencies

Author:

Soler-Agesta RuthORCID,Marco-Brualla Joaquín,Minjárez-Sáenz Martha,Yim Christina Y.,Martínez-Júlvez MartaORCID,Price Matthew R.ORCID,Moreno-Loshuertos Raquel,Ames Tyler D.,Jimeno José,Anel AlbertoORCID

Abstract

PT-112 is a novel pyrophosphate–platinum conjugate, with clinical activity reported in advanced pretreated solid tumors. While PT-112 has been shown to induce robust immunogenic cell death (ICD) in vivo but only minimally bind DNA, the molecular mechanism underlying PT-112 target disruption in cancer cells is still under elucidation. The murine L929 in vitro system was used to test whether differential metabolic status alters PT-112’s effects, including cell cytotoxicity. The results showed that tumor cells presenting mutations in mitochondrial DNA (mtDNA) (L929dt and L929dt cybrid cells) and reliant on glycolysis for survival were more sensitive to cell death induced by PT-112 compared to the parental and cybrid cells with an intact oxidative phosphorylation (OXPHOS) pathway (L929 and dtL929 cybrid cells). The type of cell death induced by PT-112 did not follow the classical apoptotic pathway: the general caspase inhibitor Z-VAD-fmk did not inhibit PT-112-induced cell death, alone or in combination with the necroptosis inhibitor necrostatin-1. Interestingly, PT-112 initiated autophagy in all cell lines, though this process was not complete. Autophagy is known to be associated with an integrated stress response in cancer cells and with subsequent ICD. PT-112 also induced a massive accumulation of mitochondrial reactive oxygen species, as well as changes in mitochondrial polarization—only in the sensitive cells harboring mitochondrial dysfunction—along with calreticulin cell-surface exposure consistent with ICD. PT-112 substantially reduced the amount of mitochondrial CoQ10 in L929 cells, while the basal CoQ10 levels were below our detection limits in L929dt cells, suggesting a potential relationship between a low basal level of CoQ10 and PT-112 sensitivity. Finally, the expression of HIF-1α was much higher in cells sensitive to PT-112 compared to cells with an intact OXPHOS pathway, suggesting potential clinical applications.

Funder

Promontory Therapeutics Inc.

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Immunogenic cell stress and death in the treatment of cancer;Seminars in Cell & Developmental Biology;2024-03

2. Transmitochondrial Cybrid Generation Using Cancer Cell Lines;Journal of Visualized Experiments;2023-03-17

3. Immunogenic Cell Death in Hematological Malignancy Therapy;Advanced Science;2023-02-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3