Automated Analysis of Proliferating Cells Spatial Organisation Predicts Prognosis in Lung Neuroendocrine Neoplasms

Author:

Bulloni MatteoORCID,Sandrini Giada,Stacchiotti Irene,Barberis MassimoORCID,Calabrese Fiorella,Carvalho Lina,Fontanini Gabriella,Alì Greta,Fortarezza FrancescoORCID,Hofman PaulORCID,Hofman Veronique,Kern IzidorORCID,Maiorano EugenioORCID,Maragliano Roberta,Marchiori DeborahORCID,Metovic JasnaORCID,Papotti Mauro,Pezzuto FedericaORCID,Pisa Eleonora,Remmelink Myriam,Serio GabriellaORCID,Marzullo Andrea,Trabucco Senia Maria Rosaria,Pennella Antonio,De Palma Angela,Marulli Giuseppe,Fassina Ambrogio,Maffeis ValeriaORCID,Nesi GabriellaORCID,Naheed Salma,Rea Federico,Ottensmeier Christian H.ORCID,Sessa Fausto,Uccella SilviaORCID,Pelosi GiuseppeORCID,Pattini Linda

Abstract

Lung neuroendocrine neoplasms (lung NENs) are categorised by morphology, defining a classification sometimes unable to reflect ultimate clinical outcome. Subjectivity and poor reproducibility characterise diagnosis and prognosis assessment of all NENs. Here, we propose a machine learning framework for tumour prognosis assessment based on a quantitative, automated and repeatable evaluation of the spatial distribution of cells immunohistochemically positive for the proliferation marker Ki-67, performed on the entire extent of high-resolution whole slide images. Combining features from the fields of graph theory, fractality analysis, stochastic geometry and information theory, we describe the topology of replicating cells and predict prognosis in a histology-independent way. We demonstrate how our approach outperforms the well-recognised prognostic role of Ki-67 Labelling Index on a multi-centre dataset comprising the most controversial lung NENs. Moreover, we show that our system identifies arrangement patterns in the cells positive for Ki-67 that appear independently of tumour subtyping. Strikingly, the subset of these features whose presence is also independent of the value of the Labelling Index and the density of Ki-67-positive cells prove to be especially relevant in discerning prognostic classes. These findings disclose a possible path for the future of grading and classification of NENs.

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3