Dichloroacetate and Quercetin Prevent Cell Proliferation, Induce Cell Death and Slow Tumor Growth in a Mouse Model of HPV-Positive Head and Neck Cancer

Author:

Zhuang Yongxian1,Coppock Joseph D.1ORCID,Haugrud Allison B.1,Lee John H.1,Messerli Shanta M.1ORCID,Miskimins W. Keith1

Affiliation:

1. Cancer Biology and Immunotherapies, Sanford Research, Sioux Falls, SD 57104, USA

Abstract

Elevated glucose uptake and production of lactate are common features of cancer cells. Among many tumor-promoting effects, lactate inhibits immune responses and is positively correlated with radioresistance. Dichloroacetate (DCA) is an inhibitor of pyruvate dehydrogenase kinase that decreases lactate production. Quercetin is a flavonoid compound found in fruits and vegetables that inhibits glucose uptake and lactate export. We investigated the potential role and mechanisms of DCA, quercetin, and their combination, in the treatment of HPV-positive head and neck squamous cell carcinoma, an antigenic cancer subtype in need of efficacious adjuvant therapies. C57Bl/6-derived mouse oropharyngeal epithelial cells, a previously developed mouse model that was retrovirally transduced with HPV type-16 E6/E7 and activated Ras, were used to assess these compounds. Both DCA and quercetin inhibited colony formation and reduced cell viability, which were associated with mTOR inhibition and increased apoptosis through enhanced ROS production. DCA and quercetin reduced tumor growth and enhanced survival in immune-competent mice, correlating with decreased proliferation as well as decreased acidification of the tumor microenvironment and reduction of Foxp (+) Treg lymphocytes. Collectively, these data support the possible clinical application of DCA and quercetin as adjuvant therapies for head and neck cancer patients.

Funder

National Cancer Institute

NIH Center of Biomedical Research Excellence

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3