Abstract
Bacillus Calmette-Guérin (BCG) is commonly used in the immunotherapy of bladder cancer (BlCa) but its effectiveness is limited to only a fraction of patients. To identify the factors that regulate the response of human BlCa tumor microenvironment (TME) to BCG, we used the ex vivo whole-tissue explant model. The levels of COX2 in the BCG-activated explants closely correlated with the local production of Treg- and MDSCS attractants and suppressive factors, while the baseline COX2 levels did not have predictive value. Accordingly, we observed that BCG induced high levels of MDSC- and Treg-attracting chemokines (CCL22, CXCL8, CXCL12) and suppressive factors (IDO1, IL-10, NOS2). These undesirable effects were associated with the nuclear translocation of phosphorylated NFκB, induction of COX2, the key enzyme controlling PGE2 synthesis, and elevation of a PGE2 receptor, EP4. While NFκB blockade suppressed both the desirable and undesirable components of BCG-driven inflammation, the inhibitors of PGE2 synthesis (Celecoxib or Indomethacin) or signaling (EP4-selective blocker, ARY-007), selectively eliminated the induction of MDSC/Treg attractants and immunosuppressive factors but enhanced the production of CTL attractants, CCL5, CXCL9 and CXCL10. PGE2 blockade allowed for the selectively enhanced migration of CTLs to the BCG-treated BlCa samples and eliminated the enhanced migration of Tregs. Since the balance between the CTLs and suppressive cells in the TME predicts the outcomes in patients with BlCa and other diseases, our data help to elucidate the mechanisms which limit the effectiveness of BCG therapies and identify new targets to enhance their therapeutic effects.
Funder
National Institutes of Health
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献