Quantification of Resection Margin following Sublobar Resection in Lung Cancer Patients through Pre- and Post-Operative CT Image Comparison: Utilizing a CT-Based 3D Reconstruction Algorithm

Author:

Lin Yu-Hsuan1,Chen Li-Wei1ORCID,Wang Hao-Jen1ORCID,Hsieh Min-Shu2,Lu Chao-Wen3,Chuang Jen-Hao3ORCID,Chang Yeun-Chung4,Chen Jin-Shing3,Chen Chung-Ming1ORCID,Lin Mong-Wei3ORCID

Affiliation:

1. Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 106, Taiwan

2. Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan

3. Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan

4. Department of Medical Imaging, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan

Abstract

Sublobar resection has emerged as a standard treatment option for early-stage peripheral non-small cell lung cancer. Achieving an adequate resection margin is crucial to prevent local tumor recurrence. However, gross measurement of the resection margin may lack accuracy due to the elasticity of lung tissue and interobserver variability. Therefore, this study aimed to develop an objective measurement method, the CT-based 3D reconstruction algorithm, to quantify the resection margin following sublobar resection in lung cancer patients through pre- and post-operative CT image comparison. An automated subvascular matching technique was first developed to ensure accuracy and reproducibility in the matching process. Following the extraction of matched feature points, another key technique involves calculating the displacement field within the image. This is particularly important for mapping discontinuous deformation fields around the surgical resection area. A transformation based on thin-plate spline is used for medical image registration. Upon completing the final step of image registration, the distance at the resection margin was measured. After developing the CT-based 3D reconstruction algorithm, we included 12 cases for resection margin distance measurement, comprising 4 right middle lobectomies, 6 segmentectomies, and 2 wedge resections. The outcomes obtained with our method revealed that the target registration error for all cases was less than 2.5 mm. Our method demonstrated the feasibility of measuring the resection margin following sublobar resection in lung cancer patients through pre- and post-operative CT image comparison. Further validation with a multicenter, large cohort, and analysis of clinical outcome correlation is necessary in future studies.

Funder

National Science and Technology Council, Taiwan

National Taiwan University Hospital, Taipei, Taiwan

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3