Gas Flow Shaping via Novel Modular Nozzle System (MoNoS) Augments kINPen-Mediated Toxicity and Immunogenicity in Tumor Organoids

Author:

Berner Julia12,Miebach Lea13ORCID,Herold Luise12,Höft Hans4,Gerling Torsten15ORCID,Mattern Philipp15,Bekeschus Sander1ORCID

Affiliation:

1. ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Straße 2, 17489 Greifswald, Germany

2. Department of Oral, Maxillofacial and Plastic Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany

3. Department of General, Visceral, Thoracic and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany

4. Department of Plasma Diagnostics, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Straße 2, 17489 Greifswald, Germany

5. Diabetes Competence Centre Karlsburg (KDK), Leibniz Institute for Plasma Science and Technology (INP), Greifswalder Straße 11, 17495 Karlsburg, Germany

Abstract

Medical gas plasma is an experimental technology for anticancer therapy. Here, partial gas ionization yielded reactive oxygen and nitrogen species, placing the technique at the heart of applied redox biomedicine. Especially with the gas plasma jet kINPen, anti-tumor efficacy was demonstrated. This study aimed to examine the potential of using passive flow shaping to enhance the medical benefits of atmospheric plasma jets (APPJ). We used an in-house developed, proprietary Modular Nozzle System (MoNoS; patent-pending) to modify the flow properties of a kINPen. MoNoS increased the nominal plasma jet-derived reactive species deposition area and stabilized the air-plasma ratio within the active plasma zone while shielding it from external flow disturbances or gas impurities. At modest flow rates, dynamic pressure reduction (DPR) adapters did not augment reactive species deposition in liquids or tumor cell killing. However, MoNoS operated at kINPen standard argon fluxes significantly improved cancer organoid growth reduction and increased tumor immunogenicity, as seen by elevated calreticulin and heat-shock protein expression, along with a significantly spurred cytokine secretion profile. Moreover, the safe application of MoNoS gas plasma jet adapters was confirmed by their similar-to-superior safety profiles assessed in the hen’s egg chorioallantoic membrane (HET-CAM) coagulation and scar formation irritation assay.

Funder

Federal Ministry of Education and Research

Ministry of Economics, Employment and Health of the state Mecklenburg-Vorpommern

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3