Optimization of the Clinical Setting Using Numerical Simulations of the Electromagnetic Field in an Obese Patient Model for Deep Regional Hyperthermia of an 8 MHz Radiofrequency Capacitively Coupled Device in the Pelvis

Author:

Ohguri TakayukiORCID,Kuroda Kagayaki,Yahara Katsuya,Nakahara Sota,Kakinouchi Sho,Itamura Hirohide,Morisaki Takahiro,Korogi Yukunori

Abstract

Background: The purpose of this study was to evaluate the effectiveness of the clinical setting for deep regional hyperthermia of an 8 MHz radiofrequency (RF) capacitively coupled device in the pelvis by using numerical simulations of the electromagnetic field. Methods: A three-dimensional patient model of cervical cancer of the uterus in an obese patient was reconstructed with computed tomography data. The specific absorption rate (SAR) and temperature distributions among the various heating settings were evaluated using numerical simulations. Results: The averaged SAR value of the deep target tumor was similar between with or without overlay boluses (OBs), and that of the subcutaneous fat (SF) at the edges of cooling boluses with OBs was lower than that of the SF without OBs. The use of OBs reduced the overheating of the SF. The 0.5% salt solution in the OB produced the least overheated areas outside the deep target tumor compared with the other concentrations. The insertion of the intergluteal cleft (IGC) bolus could improve the temperature concentration of the deep target tumor. Conclusions: The use of OBs and the salt solution concentration in the OB were important to optimize the temperature distribution. IGC bolus might contribute to temperature optimization. Further studies with individualized numerical simulations in each patient are expected.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3