Affiliation:
1. CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
Abstract
Immune checkpoint blockades (ICBs) have revolutionized cancer therapy by inducing durable clinical responses, but only a small percentage of patients can benefit from ICB treatments. Many studies have established various biomarkers to predict ICB responses. However, different biomarkers were found with diverse performances in practice, and a timely and unbiased assessment has yet to be conducted due to the complexity of ICB-related studies and trials. In this study, we manually curated 29 published datasets with matched transcriptome and clinical data from more than 1400 patients, and uniformly preprocessed these datasets for further analyses. In addition, we collected 39 sets of transcriptomic biomarkers, and based on the nature of the corresponding computational methods, we categorized them into the gene-set-like group (with the self-contained design and the competitive design, respectively) and the deconvolution-like group. Next, we investigated the correlations and patterns of these biomarkers and utilized a standardized workflow to systematically evaluate their performance in predicting ICB responses and survival statuses across different datasets, cancer types, antibodies, biopsy times, and combinatory treatments. In our benchmark, most biomarkers showed poor performance in terms of stability and robustness across different datasets. Two scores (TIDE and CYT) had a competitive performance for ICB response prediction, and two others (PASS-ON and EIGS_ssGSEA) showed the best association with clinical outcome. Finally, we developed ICB-Portal to host the datasets, biomarkers, and benchmark results and to implement the computational methods for researchers to test their custom biomarkers. Our work provided valuable resources and a one-stop solution to facilitate ICB-related research.
Funder
Science and Technology Service Network Initiative of Chinese Academy of Sciences
Strategic Priority Research Program of the Chinese Academy of Sciences
National Natural Science Foundation of China
Professional Association of the Alliance of International Science Organizations
Open Biodiversity and Health Big Data Programme of IUBS
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献