A Comprehensive Benchmark of Transcriptomic Biomarkers for Immune Checkpoint Blockades

Author:

Kang Hongen12ORCID,Zhu Xiuli12,Cui Ying12,Xiong Zhuang23,Zong Wenting23,Bao Yiming23ORCID,Jia Peilin123ORCID

Affiliation:

1. CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China

Abstract

Immune checkpoint blockades (ICBs) have revolutionized cancer therapy by inducing durable clinical responses, but only a small percentage of patients can benefit from ICB treatments. Many studies have established various biomarkers to predict ICB responses. However, different biomarkers were found with diverse performances in practice, and a timely and unbiased assessment has yet to be conducted due to the complexity of ICB-related studies and trials. In this study, we manually curated 29 published datasets with matched transcriptome and clinical data from more than 1400 patients, and uniformly preprocessed these datasets for further analyses. In addition, we collected 39 sets of transcriptomic biomarkers, and based on the nature of the corresponding computational methods, we categorized them into the gene-set-like group (with the self-contained design and the competitive design, respectively) and the deconvolution-like group. Next, we investigated the correlations and patterns of these biomarkers and utilized a standardized workflow to systematically evaluate their performance in predicting ICB responses and survival statuses across different datasets, cancer types, antibodies, biopsy times, and combinatory treatments. In our benchmark, most biomarkers showed poor performance in terms of stability and robustness across different datasets. Two scores (TIDE and CYT) had a competitive performance for ICB response prediction, and two others (PASS-ON and EIGS_ssGSEA) showed the best association with clinical outcome. Finally, we developed ICB-Portal to host the datasets, biomarkers, and benchmark results and to implement the computational methods for researchers to test their custom biomarkers. Our work provided valuable resources and a one-stop solution to facilitate ICB-related research.

Funder

Science and Technology Service Network Initiative of Chinese Academy of Sciences

Strategic Priority Research Program of the Chinese Academy of Sciences

National Natural Science Foundation of China

Professional Association of the Alliance of International Science Organizations

Open Biodiversity and Health Big Data Programme of IUBS

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3