Pilot Multi-Omic Analysis of Human Bile from Benign and Malignant Biliary Strictures: A Machine-Learning Approach

Author:

Urman Jesús M.,Herranz José M.ORCID,Uriarte IkerORCID,Rullán María,Oyón Daniel,González Belén,Fernandez-Urién Ignacio,Carrascosa Juan,Bolado FedericoORCID,Zabalza Lucía,Arechederra MaríaORCID,Alvarez-Sola Gloria,Colyn Leticia,Latasa María U.,Puchades-Carrasco LeonorORCID,Pineda-Lucena Antonio,Iraburu María J.,Iruarrizaga-Lejarreta MartaORCID,Alonso CristinaORCID,Sangro Bruno,Purroy Ana,Gil Isabel,Carmona Lorena,Cubero Francisco JavierORCID,Martínez-Chantar María L.ORCID,Banales Jesús M.,Romero Marta R.ORCID,Macias Rocio I.R.ORCID,Monte Maria J.ORCID,Marín Jose J. G.ORCID,Vila Juan J.,Corrales Fernando J.ORCID,Berasain CarmenORCID,Fernández-Barrena Maite G.ORCID,Avila Matías A.ORCID

Abstract

Cholangiocarcinoma (CCA) and pancreatic adenocarcinoma (PDAC) may lead to the development of extrahepatic obstructive cholestasis. However, biliary stenoses can also be caused by benign conditions, and the identification of their etiology still remains a clinical challenge. We performed metabolomic and proteomic analyses of bile from patients with benign (n = 36) and malignant conditions, CCA (n = 36) or PDAC (n = 57), undergoing endoscopic retrograde cholangiopancreatography with the aim of characterizing bile composition in biliopancreatic disease and identifying biomarkers for the differential diagnosis of biliary strictures. Comprehensive analyses of lipids, bile acids and small molecules were carried out using mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (1H-NMR) in all patients. MS analysis of bile proteome was performed in five patients per group. We implemented artificial intelligence tools for the selection of biomarkers and algorithms with predictive capacity. Our machine-learning pipeline included the generation of synthetic data with properties of real data, the selection of potential biomarkers (metabolites or proteins) and their analysis with neural networks (NN). Selected biomarkers were then validated with real data. We identified panels of lipids (n = 10) and proteins (n = 5) that when analyzed with NN algorithms discriminated between patients with and without cancer with an unprecedented accuracy.

Funder

Instituto de Salud Carlos III

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3