Predicting Overall Survival for Patients with Malignant Mesothelioma Following Radiotherapy via Interpretable Machine Learning

Author:

Wang Zitian1,Li Vincent R.2ORCID,Chu Fang-I1,Yu Victoria3,Lee Alan1,Low Daniel1,Moghanaki Drew1,Lee Percy4,Qi X. Sharon1

Affiliation:

1. Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA 90095, USA

2. Department of Biology, University of Southern California Dornsife School of Arts and Sciences, Los Angeles, CA 90089, USA

3. Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA

4. Department of Radiation Oncology, City of Hope Orange County Lennar Foundation Cancer Center, Irvine, CA 92618, USA

Abstract

Purpose/Objectives: Malignant pleural mesothelioma (MPM) is a rare but aggressive cancer arising from the cells of the thoracic pleura with a poor prognosis. We aimed to develop a model, via interpretable machine learning (ML) methods, predicting overall survival for MPM following radiotherapy based on dosimetric metrics as well as patient characteristics. Materials/Methods: Sixty MPM (37 right, 23 left) patients treated on a Tomotherapy unit between 2013 and 2018 were retrospectively analyzed. All patients received 45 Gy (25 fractions). The multivariable Cox regression (Cox PH) model and Survival Support Vector Machine (sSVM) were applied to build predictive models of overall survival (OS) based on clinical, dosimetric, and combined variables. Results: Significant differences in dosimetric endpoints for critical structures, i.e., the lung, heart, liver, kidney, and stomach, were observed according to target laterality. The OS was found to be insignificantly different (p = 0.18) between MPM patients who tested left- and right-sided, with 1-year OS of 77.3% and 75.0%, respectively. With Cox PH regression, considering dosimetric variables for right-sided patients alone, an increase in PTV_Min, Total_Lung_PTV_Mean, Contra_Lung_Volume, Contra_Lung_V20, Esophagus_Mean, and Heart_Volume had a greater hazard to all-cause death, while an increase in Total_Lung_PTV_V20, Contra_Lung_V5, and Esophagus_Max had a lower hazard to all-cause death. Considering clinical variables alone, males and increases in N stage had greater hazard to all-cause death; considering both clinical and dosimetric variables, increases in N stage, PTV_Mean, PTV_Min, and esophagus_Mean had greater hazard to all-cause death, while increases in T stage and Heart_V30 had lower hazard to all-cause-death. In terms of C-index, the Cox PH model and sSVM performed similarly and fairly well when considering clinical and dosimetric variables independently or jointly. Conclusions: Clinical and dosimetric variables may predict the overall survival of mesothelioma patients, which could guide personalized treatment planning towards a better treatment response. The identified predictors and their impact on survival offered additional value for translational application in clinical practice.

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Performance comparison of ten state-of-the-art machine learning algorithms for outcome prediction modeling of radiation-induced toxicity;2024-05-26

2. Early Malignant Mesothelioma Detection Using Ensemble of Naive Bayes Under Decorate Ensemble Framework;Journal of The Institution of Engineers (India): Series B;2024-01-28

3. Machine Learning for Mesothelioma: Early Detection and Treatment;2023 3rd International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON);2023-12-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3