The Influence of the Ketogenic Diet on the Immune Tolerant Microenvironment in Glioblastoma

Author:

Kesarwani Pravin,Kant Shiva,Zhao Yi,Miller C. RyanORCID,Chinnaiyan Prakash

Abstract

Glioblastoma (GBM) represents an aggressive and immune-resistant cancer. Preclinical investigations have identified anti-tumor activity of a ketogenic diet (KD) potentially being used to target GBM’s glycolytic phenotype. Since immune cells in the microenvironment have a similar reliance upon nutrients to perform their individual functions, we sought to determine if KD influenced the immune landscape of GBM. Consistent with previous publications, KD improved survival in GBM in an immune-competent murine model. Immunophenotyping of tumors identified KD-influenced macrophage polarization, with a paradoxical 50% increase in immune-suppressive M2-like-macrophages and a decrease in pro-inflammatory M1-like-macrophages. We recapitulated KD in vitro using a modified cell culture based on metabolomic profiling of serum in KD-fed mice, mechanistically linking the observed changes in macrophage polarization to PPARγ-activation. We hypothesized that parallel increases in M2-macrophage polarization tempered the therapeutic benefit of KD in GBM. To test this, we performed investigations combining KD with the CSF-1R inhibitor (BLZ945), which influences macrophage polarization. The combination demonstrated a striking improvement in survival and correlative studies confirmed BLZ945 normalized KD-induced changes in macrophage polarization. Overall, KD demonstrates antitumor activity in GBM; however, its efficacy is attenuated by promoting an immunosuppressive phenotype in macrophages. Combinatorial strategies designed to modulate macrophage polarization represent a rational approach to improve the anti-tumor activity of KD in GBM.

Funder

National Institute of Health (NIH)/National Institute of Neurological Disorders and Stroke

American Cancer Society

DMC Foundation Grant

Bankhead-Coley Cancer Research Program from Beaumont Health

NIH/NCI

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3