Al[18F]F-NOTA-Octreotide Is Comparable to [68Ga]Ga-DOTA-TATE for PET/CT Imaging of Neuroendocrine Tumours in the Latin-American Population

Author:

Haeger Arlette,Soza-Ried CristianORCID,Kramer Vasko,Hurtado de Mendoza Ana,Eppard ElisabethORCID,Emmanuel Noémie,Wettlin Johanna,Amaral Horacio,Fernández RenéORCID

Abstract

PET imaging of neuroendocrine tumours (NET) is well established for staging and therapy follow-up. The short half-life, increasing costs, and regulatory issues significantly limit the availability of approved imaging agents, such as [68Ga]Ga-DOTA-TATE. Al[18F]F-NOTA-Octreotide provides a similar biodistribution and tumour uptake, can be produced on a large scale and may improve access to precision imaging. Here we prospectively compared the clinical utility of [68Ga]Ga-DOTA-TATE and Al[18F]F-NOTA-Octreotide in the Latin-American population. Our results showed that in patients with stage IV NETs [68Ga]Ga-DOTA-TATE presents higher physiological uptake than Al[18F]F-NOTA-Octreotide in the liver, hypophysis, salivary glands, adrenal glands (all p < 0.001), pancreatic uncinated process, kidneys, and small intestine (all p < 0.05). Nevertheless, despite the lower background uptake of Al[18F]F-NOTA-Octreotide, comparative analysis of tumour-to-liver (TLR) and tumour-to-spleen (TSR) showed no statistically significant difference for lesions in the liver, bone, lymph nodes, and other tissues. Only three discordant lesions in highly-metastases livers were detected by [68Ga]Ga-DOTA-TATE but not by Al[18F]F-NOTA-Octreotide and only one discordant lesion was detected by Al[18F]F-NOTA-Octreotide but not by [68Ga]Ga-DOTA-TATE. Non-inferiority analysis showed that Al[18F]F-NOTA-Octreotide is comparable to [68Ga]Ga-DOTA-TATE. Hence, our results demonstrate that Al[18F]F-NOTA-Octreotide provided excellent image quality, visualized NET lesions with high sensitivity and represents a highly promising, clinical alternative to [68Ga]Ga-DOTA-TATE.

Funder

Ion Beam Applications, Louvain-la-Neuve, Belgium

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3