NCL Inhibition Exerts Antineoplastic Effects against Prostate Cancer Cells by Modulating Oncogenic MicroRNAs

Author:

Sheetz TylerORCID,Mills Joseph,Tessari Anna,Pawlikowski Megan,Braddom Ashley E.,Posid Tasha,Zynger Debra L.,James Cindy,Embrione ValerioORCID,Parbhoo Kareesma,Foray ClaudiaORCID,Coppola Vincenzo,Croce Carlo M.,Palmieri Dario

Abstract

Prostate cancer (PCa) is the most frequently diagnosed cancer in men and second most common cause of cancer-related deaths in the United States. Androgen deprivation therapy (ADT) is only temporarily effective for advanced-stage PCa, as the disease inevitably progresses to castration-resistant prostate cancer (CRPC). The protein nucleolin (NCL) is overexpressed in several types of human tumors where it is also mislocalized to the cell surface. We previously reported the identification of a single-chain fragment variable (scFv) immuno-agent that is able to bind NCL on the surface of breast cancer cells and inhibit proliferation both in vitro and in vivo. In the present study, we evaluated whether NCL could be a valid therapeutic target for PCa, utilizing DU145, PC3 (CRPC), and LNCaP (androgen-sensitive) cell lines. First, we interrogated the publicly available databases and noted that higher NCL mRNA levels are associated with higher Gleason Scores as well as with recurrent and metastatic tumors. Then, using our anti-NCL scFv, we demonstrated that NCL is expressed on the surface of all three tested cell lines and that NCL inhibition results in reduced proliferation and migration. We also measured the inhibitory effect of NCL targeting on the biogenesis of oncogenic microRNAs such as miR-21, -221 and -222, which was cell context dependent. Taken together, our data provide evidence that NCL targeting inhibits the key hallmarks of malignancy in PCa cells and may provide a novel therapeutic option for patients with advanced-stage PCa.

Funder

National Institutes of Health

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3