Evolution of the Targeted Therapy Landscape for Cholangiocarcinoma: Is Cholangiocarcinoma the ‘NSCLC’ of GI Oncology?

Author:

Gupta Amol1,Kurzrock Razelle234,Adashek Jacob J.5ORCID

Affiliation:

1. Department of Medicine, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Hospital, Baltimore, MD 21287, USA

2. WIN Consortium, San Diego, CA 92093, USA

3. Division of Hematology and Oncology, Medical College of Wisconsin Cancer Center, Milwaukee, WI 53226, USA

4. Division of Hematology and Oncology, University of Nebraska, Omaha, NE 68182, USA

5. Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Hospital, Baltimore, MD 21287, USA

Abstract

In the past two decades, molecular targeted therapy has revolutionized the treatment landscape of several malignancies. Lethal malignancies such as non-small cell lung cancer (NSCLC) have become a model for precision-matched immune- and gene-targeted therapies. Multiple small subgroups of NSCLC defined by their genomic aberrations are now recognized; remarkably, taken together, almost 70% of NSCLCs now have a druggable anomaly. Cholangiocarcinoma (CCA) is a rare tumor with a poor prognosis. Novel molecular alterations have been recently identified in patients with CCA, and the potential for targeted therapy is being realized. In 2019, a fibroblast growth factor receptor 2 (FGFR2) inhibitor, pemigatinib, was the first approved targeted therapy for patients with locally advanced or metastatic intrahepatic CCA who had FGFR2 gene fusions or rearrangement. More regulatory approvals for matched targeted therapies as second-line or subsequent treatments in advanced CCA followed, including additional drugs that target FGFR2 gene fusion/rearrangement. Recent tumor-agnostic approvals include (but are not limited to) drugs that target mutations/rearrangements in the following genes and are hence applicable to CCA: isocitrate dehydrogenase 1 (IDH1); neurotrophic tropomyosin-receptor kinase (NTRK); the V600E mutation of the BRAF gene (BRAFV600E); and high tumor mutational burden, high microsatellite instability, and gene mismatch repair-deficient (TMB-H/MSI-H/dMMR) tumors. Ongoing trials investigate HER2, RET, and non-BRAFV600E mutations in CCA and improvements in the efficacy and safety of new targeted treatments. This review aims to present the current status of molecularly matched targeted therapy for advanced CCA.

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3