Phototheranostics of Splenic Myeloid-Derived Suppressor Cells and Its Impact on Spleen Metabolism in Tumor-Bearing Mice

Author:

Barnett James D.ORCID,Jin JiefuORCID,Penet Marie-France,Kobayashi HisatakaORCID,Bhujwalla Zaver M.

Abstract

(1) Background: MDSCs play an active role in the immune surveillance escape of cancer cells. Because MDSCs in mice are CD11b+Gr1+, near-infrared photoimmunotherapy (NIR-PIT) using the NIR dye IR700 conjugated to an MDSC-binding antibody provides an opportunity for targeted elimination of MDSCs. (2) Methods: The efficacy of Gr1-IR700-mediated NIR-PIT was evaluated in vitro using magnetically separated CD11b+Gr1+ MDSCs from spleens of 4T1-luc tumor-bearing (TB) mice. For in vivo evaluation, spleens of Gr1-IR700-injected 4T1-luc TB mice were irradiated with NIR light, and splenocyte viability was determined using CCK-8 assays. Metabolic profiling of NIR-PIT-irradiated spleens was performed using 1H MRS. (3) Results: Flow cytometric analysis confirmed a ten-fold increase in splenic MDSCs in 4T1-luc TB mice. Gr1-IR700-mediated NIR-PIT eliminated tumor-induced splenic MDSCs in culture. Ex vivo fluorescence imaging revealed an 8- and 9-fold increase in mean fluorescence intensity (MFI) in the spleen and lungs of Gr1-IR700-injected compared to IgG-IR700-injected TB mice. Splenocytes from Gr1-IR700-injected TB mice exposed in vivo to NIR-PIT demonstrated significantly lower viability compared to no light exposure or untreated control groups. Significant metabolic changes were observed in spleens following NIR-PIT. (4) Conclusions: Our data confirm the ability of NIR-PIT to eliminate splenic MDSCs, identifying its potential to eliminate MDSCs in tumors to reduce immune suppression. The metabolic changes observed may identify potential biomarkers of splenic MDSC depletion as well as potential metabolic targets of MDSCs.

Funder

National Institutes of Health

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3