Mass Spectrometry Imaging Reveals Abnormalities in Cardiolipin Composition and Distribution in Astrocytoma Tumor Tissues

Author:

Krieger Anna C.1ORCID,Macias Luis A.1ORCID,Goodman J. Clay2,Brodbelt Jennifer S.1,Eberlin Livia S.13

Affiliation:

1. Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA

2. Departments of Pathology & Immunology and Neurology, Baylor College of Medicine, Houston, TX 77030, USA

3. Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA

Abstract

Cardiolipin (CL) is a mitochondrial lipid with diverse roles in cellular respiration, signaling, and organelle membrane structure. CL content and composition are essential for proper mitochondrial function. Deranged mitochondrial energy production and signaling are key components of glial cell cancers and altered CL molecular species have been observed in mouse brain glial cell xenograft tumors. The objective of this study was to describe CL structural diversity trends in human astrocytoma tumors of varying grades and correlate these trends with histological regions within the heterogeneous astrocytoma microenvironment. To this aim, we applied desorption electrospray ionization coupled with high field asymmetric ion mobility mass spectrometry (DESI-FAIMS-MS) to map CL molecular species in human normal cortex (N = 29), lower-grade astrocytoma (N = 19), and glioblastoma (N = 28) tissues. With this platform, we detected 46 CL species and 12 monolysocardiolipin species from normal cortex samples. CL profiles detected from glioblastoma tissues lacked diversity and abundance of longer chain polyunsaturated fatty acid containing CL species when compared to CL detected from normal and lower-grade tumors. CL profiles correlated with trends in tumor viability and tumor infiltration. Structural characterization of the CL species by tandem MS experiments revealed differences in fatty acid and double bond isomer composition among astrocytoma tissues compared with normal cortex and glioblastoma tissues. The GlioVis platform was used to analyze astrocytoma gene expression data from the CGGA dataset. Decreased expression of several mitochondrial respiratory enzyme encoding-genes was observed for higher-grade versus lower-grade tumors, however no significant difference was observed for cardiolipin synthesis enzyme CRLS1.

Funder

NIH

Welch Foundation

National Institute Of General Medical Sciences of the National Institutes of Health

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3