A “Seed-and-Soil” Radiomics Model Predicts Brain Metastasis Development in Lung Cancer: Implications for Risk-Stratified Prophylactic Cranial Irradiation

Author:

Chu Xiao,Gong Jing,Yang Xi,Ni Jianjiao,Gu Yajia,Zhu ZhengfeiORCID

Abstract

Introduction: Brain is a major site of metastasis for lung cancer, and effective therapy for developed brain metastasis (BM) is limited. Prophylactic cranial irradiation (PCI) has been shown to reduce BM rate and improve survival in small cell lung cancer, but this result was not replicated in unselected non-small cell lung cancer (NSCLC) and had the risk of inducing neurocognitive dysfunctions. We aimed to develop a radiomics BM prediction model for BM risk stratification in NSCLC patients. Methods: 256 NSCLC patients with no BM at baseline brain magnetic resonance imaging (MRI) were selected; 128 patients developed BM within three years after diagnosis and 128 remained BM-free. For radiomics analysis, both the BM and non-BM groups were randomly distributed into training and testing datasets at an 70%:30% ratio. Both brain MRI (representing the soil) and chest computed tomography (CT, representing the seed) radiomic features were extracted to develop the BM prediction models. We first developed the radiomic models using the training dataset (89 non-BM and 90 BM cases) and subsequently validated the models in the testing dataset (39 non-BM and 38 BM cases). A radiomics BM score (RadBM score) was generated, and BM-free survival were compared between RadBM score-high and RadBM score-low groups. Results: The radiomics model developed from baseline brain MRI features alone can predict BM development in NSCLC patients. A fusion model integrating brain MRI features with primary tumor CT features (seed-and-soil model) provided synergetic effect and was more efficient in predicting BM (areas under the receiver operating characteristic curve 0.84 (95% confidence interval: 0.80–0.89) and 0.80 (95% confidence interval: 0.71–0.88) in the training and testing datasets, respectively). BM-free survival was significantly shorter in the RadBM score-high group versus the RadBM score-low group (Log-rank, p < 0.001). Hazard ratios for BM were 1.056 (95% confidence interval: 1.044–1.068) per 0.01 increment in RadBM score. Cumulative BM rates at three years were 75.8% and 24.2% for the RadBM score-high and RadBM score-low groups, respectively. Only 1.2% (7/565) of the BM lesions were located within the hippocampal avoidance region. Conclusion: The results demonstrated that intrinsic features of a non-metastatic brain exert a significant impact on BM development, which is first-in-class in metastasis prediction studies. A radiomics BM prediction model utilizing both primary tumor and pre-metastatic brain features might provide a useful tool for individualized PCI administration in NSCLC patients more prone to develop BM.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

Beijing Xisike Clinical Oncology Research Foundation

Shanghai Anti-cancer Association EYAS PROJECT

Artificial Intelligence Medical Hospital Cooperation Project of Xuhui District in Shanghai

Key Clinical Specialty Project of Shanghai

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3