Abstract
Aromatase inhibitors (AIs) reduce estrogen levels up to 98% as the standard practice to treat postmenopausal women with estrogen receptor-positive (ER+) breast cancer. However, approximately 30% of ER+ breast cancers develop resistance to treatment. Enhanced interferon-alpha (IFNα) signaling is upregulated in breast cancers resistant to AIs, which drives expression of a key regulator of survival, interferon-induced transmembrane protein 1 (IFITM1). However, how upregulated IFNα signaling mediates AI resistance is unknown. In this study, we utilized MCF-7:5C cells, a breast cancer cell model of AI resistance, and demonstrate that these cells exhibit enhanced IFNα signaling and ligand-independent activation of the estrogen receptor (ERα). Experiments demonstrated that STAT1, the mediator of intracellular signaling for IFNα, can interact directly with ERα. Notably, inhibition of IFNα signaling significantly reduced ERα protein expression and ER-regulated genes. In addition, loss of ERα suppressed IFITM1 expression, which was associated with cell death. Notably, chromatin immunoprecipitation experiments validated that both ERα and STAT1 associate with ERE sequences in the IFITM1 promoter. Overall, hyperactivation of IFNα signaling enhances ligand-independent activation of ERα, which promotes ER-regulated, and interferon stimulated gene expression to promote survival in AI-resistant breast cancer cells.
Funder
National Institutes of Health
National Cancer Institute
Congressionally Directed Medical Research Programs
American Cancer Society
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献