Abstract
Background and aims: The MET exon 14 skipping (METex14) is an oncogenic driver mutation that provides a therapeutic opportunity in non-small cell lung cancer (NSCLCs) patients. This event often results from sequence changes at the MET canonical splicing sites. We characterize two novel non-canonical splicing site variants of MET that produce METex14. Materials and Methods: Two variants were identified in three advanced-stage NSCLC patients in a next-generation sequencing panel. The potential impact on splicing was predicted using in silico tools. METex14 mutation was confirmed using reverse transcription (RT)-PCR and a Sanger sequencing analysis on RNA extracted from stained cytology smears. Results: The interrogated MET (RefSeq ID NM_000245.3) variants include a single nucleotide substitution, c.3028+3A>T, in intron 14 and a deletion mutation, c.3012_3028del, in exon 14. The in silico prediction analysis exhibited reduced splicing strength in both variants compared with the MET normal transcript. The RT-PCR and subsequent Sanger sequencing analyses confirmed METex14 skipping in all three patients carrying these variants. Conclusion: This study reveals two non-canonical MET splice variants that cause exon 14 skipping, concurrently also proposes a clinical workflow for the classification of such non-canonical splicing site variants detected by routine DNA-based NGS test. It shows the usefulness of in silico prediction to identify potential METex14 driver mutation and exemplifies the opportunity of routine cytology slides for RNA-based testing.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献