GAS-Luc2 Reporter Cell Lines for Immune Checkpoint Drug Screening in Solid Tumors

Author:

Chang Hyeyoun1ORCID,Foulke John G.1,Chen Luping1,Tian Fang1,Gu Zhizhan1ORCID

Affiliation:

1. American Type Culture Collection (ATCC), Manassas, VA 20110, USA

Abstract

Recent studies highlight the integral role of the interferon gamma receptor (IFNγR) pathway in T cell–mediated cytotoxicity against solid but not liquid tumors. IFNγ not only directly facilitates tumor cell death by T cells but also indirectly promotes cytotoxicity via myeloid phagocytosis in the tumor microenvironment. Meanwhile, full human ex vivo immune checkpoint drug screening remains challenging. We hypothesized that an engineered gamma interferon activation site response element luciferase reporter (GAS-Luc2) can be utilized for immune checkpoint drug screening in diverse ex vivo T cell–solid tumor cell co-culture systems. We comprehensively profiled cell surface proteins in ATCC’s extensive collection of human tumor and immune cell lines, identifying those with endogenously high expression of established and novel immune checkpoint molecules and binding ligands. We then engineered three GAS-Luc2 reporter tumor cell lines expressing immune checkpoints PD-L1, CD155, or B7-H3/CD276. Luciferase expression was suppressed upon relevant immune checkpoint–ligand engagement. In the presence of an immune checkpoint inhibitor, T cells released IFNγ, activating the JAK-STAT pathway in GAS-Luc2 cells, and generating a quantifiable bioluminescent signal for inhibitor evaluation. These reporter lines also detected paracrine IFNγ signaling for immune checkpoint-targeted ADCC drug screening. Further development into an artificial antigen-presenting cell line (aAPC) significantly enhanced T cell signaling for superior performance in these ex vivo immune checkpoint drug screening platforms.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3