diTFPP, a Phenoxyphenol, Sensitizes Hepatocellular Carcinoma Cells to C2-Ceramide-Induced Autophagic Stress by Increasing Oxidative Stress and ER Stress Accompanied by LAMP2 Hypoglycosylation

Author:

Chiu Chien-ChihORCID,Chen Yen-ChunORCID,Bow Yung-DingORCID,Chen Jeff Yi-Fu,Liu Wangta,Huang Jau-Ling,Shu En-De,Teng Yen-Ni,Wu Chang-Yi,Chang Wen-TsanORCID

Abstract

Hepatocellular carcinoma (HCC), the most common type of liver cancer, is the leading cause of cancer-related mortality worldwide. Chemotherapy is the major treatment modality for advanced or unresectable HCC; unfortunately, chemoresistance results in a poor prognosis for HCC patients. Exogenous ceramide, a sphingolipid, has been well documented to exert anticancer effects. However, recent reports suggest that sphingolipid metabolism in ceramide-resistant cancer cells favors the conversion of exogenous ceramides to prosurvival sphingolipids, conferring ceramide resistance to cancer cells. However, the mechanism underlying ceramide resistance remains unclear. We previously demonstrated that diTFPP, a novel phenoxyphenol compound, enhances the anti-HCC effect of C2-ceramide. Here, we further clarified that treatment with C2-ceramide alone increases the protein level of CERS2, which modulates sphingolipid metabolism to favor the conversion of C2-ceramide to prosurvival sphingolipids in HCC cells, thus activating the unfolded protein response (UPR), which further initiates autophagy and the reversible senescence-like phenotype (SLP), ultimately contributing to C2-ceramide resistance in these cells. However, cotreatment with diTFPP and ceramide downregulated the protein level of CERS2 and increased oxidative and endoplasmic reticulum (ER) stress. Furthermore, insufficient LAMP2 glycosylation induced by diTFPP/ceramide cotreatment may cause the failure of autophagosome–lysosome fusion, eventually lowering the threshold for triggering cell death in response to C2-ceramide. Our study may shed light on the mechanism of ceramide resistance and help in the development of adjuvants for ceramide-based cancer therapeutics.

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3