A Combination of Radiotherapy, Hyperthermia, and Immunotherapy Inhibits Pancreatic Tumor Growth and Prolongs the Survival of Mice

Author:

Mahmood Javed,Alexander Allen A.,Samanta Santanu,Kamlapurkar Shriya,Singh Prerna,Saeed Ali,Carrier France,Cao Xuefang,Shukla Hem DORCID,Vujaskovic Zeljko

Abstract

Background: Pancreatic cancer (PC) is the fourth-most-deadly cancer in the United States with a 5-year survival rate of only 8%. Unfortunately, only 10–20% of PC patients are candidates for surgery, with the vast majority of patients with locally-advanced disease undergoing chemotherapy and/or radiation therapy (RT). Current treatments are clearly inadequate and novel strategies are crucially required. We investigated a novel tripartite treatment (combination of tumor targeted hyperthermia (HT), radiation therapy (RT), and immunotherapy (IT)) to alter immunosuppressive PC-tumor microenvironment (TME). (2). Methods: In a syngeneic PC murine tumor model, HT was delivered before tumor-targeted RT, by a small animal radiation research platform (SARRP) followed by intraperitoneal injections of cytotoxic T-cell agonist antibody against OX40 (also known as CD134 or Tumor necrosis factor receptor superfamily member 4; TNFRSF4) that can promote T-effector cell activation and inhibit T-regulatory (T-reg) function. (3). Results: Tripartite treatment demonstrated significant inhibition of tumor growth (p < 0.01) up to 45 days post-treatment with an increased survival rate compared to any monotherapy. Flow cytometric analysis showed a significant increase (p < 0.01) in cytotoxic CD8 and CD4+ T-cells in the TME of the tripartite treatment groups. There was no tripartite-treatment-related toxicity observed in mice. (4). Conclusions: Tripartite treatment could be a novel therapeutic option for PC patients.

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3