Evaluation of a Balloon Implant for Simultaneous Magnetic Nanoparticle Hyperthermia and High-Dose-Rate Brachytherapy of Brain Tumor Resection Cavities

Author:

Wan Shuying1,Rodrigues Dario B.2ORCID,Kwiatkowski Janet3,Khanna Omaditya4,Judy Kevin D.4ORCID,Goldstein Robert C.5ORCID,Overbeek Bloem Marty6,Yu Yan1,Rooks Sophia E.1,Shi Wenyin1,Hurwitz Mark D.7,Stauffer Paul R.1

Affiliation:

1. Department of Radiation Oncology, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA

2. Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA

3. MAE Group, Deerfield, NH 03037, USA

4. Department of Neurosurgery, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA

5. AMF Life Systems, Auburn Hills, MI 48326, USA

6. Phoenix DeVentures, Morgan Hill, CA 95037, USA

7. Radiation Medicine, Westchester Medical Center University Hospital, Valhalla, NY 10595, USA

Abstract

Previous work has reported the design of a novel thermobrachytherapy (TBT) balloon implant to deliver magnetic nanoparticle (MNP) hyperthermia and high-dose-rate (HDR) brachytherapy simultaneously after brain tumor resection, thereby maximizing their synergistic effect. This paper presents an evaluation of the robustness of the balloon device, compatibility of its heat and radiation delivery components, as well as thermal and radiation dosimetry of the TBT balloon. TBT balloon devices with 1 and 3 cm diameter were evaluated when placed in an external magnetic field with a maximal strength of 8.1 kA/m at 133 kHz. The MNP solution (nanofluid) in the balloon absorbs energy, thereby generating heat, while an HDR source travels to the center of the balloon via a catheter to deliver the radiation dose. A 3D-printed human skull model was filled with brain-tissue-equivalent gel for in-phantom heating and radiation measurements around four 3 cm balloons. For the in vivo experiments, a 1 cm diameter balloon was surgically implanted in the brains of three living pigs (40–50 kg). The durability and robustness of TBT balloon implants, as well as the compatibility of their heat and radiation delivery components, were demonstrated in laboratory studies. The presence of the nanofluid, magnetic field, and heating up to 77 °C did not affect the radiation dose significantly. Thermal mapping and 2D infrared images demonstrated spherically symmetric heating in phantom as well as in brain tissue. In vivo pig experiments showed the ability to heat well-perfused brain tissue to hyperthermic levels (≥40 °C) at a 5 mm distance from the 60 °C balloon surface.

Funder

NIH

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3