Abstract
The discovery of biomarkers that are informative for cancer risk assessment, diagnosis, prognosis and treatment predictions is crucial. Recent advances in high-throughput genomics make it plausible to select biomarkers from the vast number of human genes in an unbiased manner. Yet, control of false discoveries is challenging given the large number of genes versus the relatively small number of patients in a typical cancer study. To ensure that most of the discoveries are true, we employ a knockoff procedure to control false discoveries. Our method is general and flexible, accommodating arbitrary covariate distributions, linear and nonlinear associations, and survival models. In simulations, our method compares favorably to the alternatives; its utility of identifying important genes in real clinical applications is demonstrated by the identification of seven genes associated with Breslow thickness in skin cutaneous melanoma patients.
Funder
National Cancer Institute
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献