Fatty Acid Signaling Impacts Prostate Cancer Lineage Plasticity in an Autocrine and Paracrine Manner

Author:

Zhang LeORCID,Billet Sandrine,Gonzales Gabrielle,Rohena-Rivera Krizia,Muranaka Hayato,Chu Gina Chia-Yi,Yang Qian,Kim Hyung,Bhowmick Neil A.,Smith Bethany

Abstract

Prostate cancer (PCa) affects an estimated 250,000 men every year and causes 34,000 deaths annually. A high-fat diet and obesity are associated with PCa progression and mortality. This study’s premise was the novel observation of crosstalk between PCa epithelia and cancer-associated fibroblasts (CAF) in response to palmitate-mediated lineage plasticity. We found that cholesterol activated canonical Hedgehog (Hh) signaling by increasing cilium Gli activity in PCa cells, while palmitate activated Hh independent of Gli. Exogenous palmitate activated SOX2, a known mediator of lineage plasticity, in PCa cells cocultured with CAF. Stroma-derived Wnt5a was upregulated in CAF while cocultured with PCa cells and treated with palmitate. Wnt5a knockdown in CAF inhibited Hh and SOX2 expression in PCa cells from cocultures. These findings supported our proposed mechanism of a high-fat diet promoting Hh signaling-mediated transformation within the tumor microenvironment. SOX2 and Wnt5a expression were limited by the CD36 neutralizing antibody. Mice xenografted with PCa epithelia and CAF tumors were fed a high-fat diet, leading to elevated SOX2 expression and lineage plasticity reprogramming compared to mice fed an isocaloric rodent diet. CD36 inhibition with enzalutamide elevated apoptosis by TUNEL, but limited proliferation and SOX2 expression compared to enzalutamide alone. This study revealed a mechanism for a high-fat diet to affect prostate cancer progression. We found that saturated fat induced lineage plasticity reprogramming of PCa by interaction with CAF through Wnt5a and Hh signaling.

Funder

United States Department of Defense

Veteran Health Administration Merit Award

National Cancer Institute

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3