Patchless Multi-Stage Transfer Learning for Improved Mammographic Breast Mass Classification

Author:

Ayana GelanORCID,Park JinhyungORCID,Choe Se-woonORCID

Abstract

Despite great achievements in classifying mammographic breast-mass images via deep-learning (DL), obtaining large amounts of training data and ensuring generalizations across different datasets with robust and well-optimized algorithms remain a challenge. ImageNet-based transfer learning (TL) and patch classifiers have been utilized to address these challenges. However, researchers have been unable to achieve the desired performance for DL to be used as a standalone tool. In this study, we propose a novel multi-stage TL from ImageNet and cancer cell line image pre-trained models to classify mammographic breast masses as either benign or malignant. We trained our model on three public datasets: Digital Database for Screening Mammography (DDSM), INbreast, and Mammographic Image Analysis Society (MIAS). In addition, a mixed dataset of the images from these three datasets was used to train the model. We obtained an average five-fold cross validation AUC of 1, 0.9994, 0.9993, and 0.9998 for DDSM, INbreast, MIAS, and mixed datasets, respectively. Moreover, the observed performance improvement using our method against the patch-based method was statistically significant, with a p-value of 0.0029. Furthermore, our patchless approach performed better than patch- and whole image-based methods, improving test accuracy by 8% (91.41% vs. 99.34%), tested on the INbreast dataset. The proposed method is of significant importance in solving the need for a large training dataset as well as reducing the computational burden in training and implementing the mammography-based deep-learning models for early diagnosis of breast cancer.

Funder

National Research Foundation of Korea

Brain Korea 21 FOUR Project

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3