N-MYC Downstream Regulated Gene 4 (NDRG4), a Frequent Downregulated Gene through DNA Hypermethylation, plays a Tumor Suppressive Role in Esophageal Adenocarcinoma

Author:

Cao Longlong,Hu Tianling,Lu Heng,Peng DunfaORCID

Abstract

The incidence of esophageal adenocarcinoma (EAC) has been rising dramatically in the past few decades in the United States and Western world. The N-myc downregulated gene 4 (NDRG4) belongs to the human NDRG family. In this study, we aimed to identify the expression levels, regulation, and functions of NDRG4 in EAC. Using an integrative epigenetic approach, we identified genes showing significant downregulation in EAC and displaying upregulation after 5-Aza-deoxycitidine. Among these genes, likely to be regulated by DNA methylation, NDRG4 was among the top 10 candidate genes. Analyses of TCGA (The Cancer Genome Atlas) and GEO (Gene Expression Omnibus) data sets and EAC tissue samples demonstrated that NDRG4 was significantly downregulated in EAC (p < 0.05). Using Pyrosequencing technology for quantification of DNA methylation, we detected that NDRG4 promoter methylation level was significantly higher in EAC tissue samples, as compared to normal esophagus samples (p < 0.01). A strong inverse correlation between NDRG4 methylation and its gene expression levels (r = −0.4, p < 0.01) was observed. Treatment with 5-Aza restored the NDRG4 expression, confirming that hypermethylation is a driving force for NDRG4 silencing in EAC. Pathway and gene set enrichment analyses of TCGA data suggested that NDRG4 is strongly associated with genes related to cell cycle regulation. Western blotting analysis showed significant downregulation of Cyclin D1, CDK4 and CDK6 in EAC cells after overexpression of NDRG4. Functionally, we found that the reconstitution of NDRG4 resulted in a significant reduction in tumor cell growth in two-dimensional (2D) and three-dimensional (3D) organotypic culture models and inhibited tumor cell proliferation as indicated by the EdU (5-ethynyl-2′-deoxyuridine) proliferation assay.

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3