atm Mutation and Oxidative Stress Enhance the Pre-Cancerous Effects of UHRF1 Overexpression in Zebrafish Livers

Author:

Ajouaou Yousra12ORCID,Magnani Elena1,Madakashira Bhavani1,Jenkins Eleanor1ORCID,Sadler Kirsten C.12

Affiliation:

1. Program in Biology, New York University Abu Dhabi, Abu Dhabi P.O. 129188, United Arab Emirates

2. Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi P.O. 129188, United Arab Emirates

Abstract

The ataxia-telangiectasia mutated (atm) gene is activated in response to genotoxic stress and leads to activation of the tp53 tumor suppressor gene which induces either senescence or apoptosis as tumor suppressive mechanisms. Atm also serves non-canonical functions in the response to oxidative stress and chromatin reorganization. We previously reported that overexpression of the epigenetic regulator and oncogene Ubiquitin Like with PHD and Ring Finger Domains 1 (UHRF1) in zebrafish hepatocytes resulted in tp53-dependent hepatocyte senescence, a small liver and larval lethality. We investigated the role of atm on UHRF1-mediated phenotypes by generating zebrafish atm mutants. atm−/− adults were viable but had reduction in fertility. Embryos developed normally but were protected from lethality caused by etoposide or H2O2 exposure and failed to fully upregulate Tp53 targets or oxidative stress response genes in response to these treatments. In contrast to the finding that Tp53 prevents the small liver phenotype caused by UHRF1 overexpression, atm mutation and exposure to H2O2 further reduced the liver size in UHRF1 overexpressing larvae whereas treatment with the antioxidant N-acetyl cysteine suppressed this phenotype. We conclude that UHRF1 overexpression in hepatocytes causes oxidative stress, and that loss of atm further enhances this, triggering elimination of these precancerous cells, leading to a small liver.

Funder

NYUAD Faculty Research Fund

Al Jalila Foundation

REF

NYU Abu Dhabi Research Institute Award

NYUAD Center for Genomics and Systems Biology

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3