Plasma Extracellular Vesicle Long RNA in Diagnosis and Prediction in Small Cell Lung Cancer

Author:

Liu Chang,Chen Jinying,Liao Jiatao,Li Yuchen,Yu Hui,Zhao Xinmin,Sun Si,Hu ZhihuangORCID,Zhang Yao,Zhu Zhengfei,Fan Min,Huang Shenglin,Wang Jialei

Abstract

(1) Introduction: The aim of this study was to identify the plasma extracellular vesicle (EV)-specific transcriptional profile in small-cell lung cancer (SCLC) and to explore the application value of plasma EV long RNA (exLR) in SCLC treatment prediction and diagnosis. (2) Methods: Plasma samples were collected from 57 SCLC treatment-naive patients, 104 non-small-cell lung cancer (NSCLC) patients and 59 healthy participants. The SCLC patients were divided into chemo-sensitive and chemo-refractory groups based on the therapeutic effects. The exLR profiles of the plasma samples were analyzed by high-throughput sequencing. Bioinformatics approaches were used to investigate the differentially expressed exLRs and their biofunctions. Finally, a t-signature was constructed using logistic regression for SCLC treatment prediction and diagnosis. (3) Results: We obtained 220 plasma exLRs profiles in all the participants. Totals of 5787 and 1207 differentially expressed exLRs were identified between SCLC/healthy controls, between the chemo-sensitive/chemo-refractory groups, respectively. Furthermore, we constructed a t-signature that comprised ten exLRs, including EPCAM, CCNE2, CDC6, KRT8, LAMB1, CALB2, STMN1, UCHL1, HOXB7 and CDCA7, for SCLC treatment prediction and diagnosis. The exLR t-score effectively distinguished the chemo-sensitive from the chemo-refractory group (p = 9.268 × 10−9) with an area under the receiver operating characteristic curve (AUC) of 0.9091 (95% CI: 0.837 to 0.9811) and distinguished SCLC from healthy controls (AUC: 0.9643; 95% CI: 0.9256–1) and NSCLC (AUC: 0.721; 95% CI: 0.6384–0.8036). (4) Conclusions: This study firstly characterized the plasma exLR profiles of SCLC patients and verified the feasibility and value of identifying biomarkers based on exLR profiles in SCLC diagnosis and treatment prediction.

Funder

Collaborative Innovation Cluster Program of Shanghai Municipal Health Commission

National Key Research and Development Project of China 658

National Natural Science Foundation of China

fellowship of China postdoctoral science foundation

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3