Granzyme B Degraded Type IV Collagen Products in Serum Identify Melanoma Patients Responding to Immune Checkpoint Blockade

Author:

Jensen ChristinaORCID,Sinkeviciute Dovile,Madsen Daniel Hargbøl,Önnerfjord Patrik,Hansen Morten,Schmidt HenrikORCID,Karsdal Morten Asser,Svane Inge Marie,Willumsen Nicholas

Abstract

A T-cell permissive tumor microenvironment, characterized by the presence of activated T cells and low fibrotic activity is crucial for response to immune checkpoint inhibitors (ICIs). Granzyme B has been shown to promote T-cell migration through the basement membrane by the degradation of type IV collagen. In this study, we evaluated the biomarker potential of measuring granzyme B-mediated degradation of type IV collagen (C4G) in combination with a fibroblast activation biomarker (PRO-C3) non-invasively for identifying metastatic melanoma patients responding to the ICI ipilimumab. A monoclonal antibody was generated against C4G and used to develop a competitive electro-chemiluminescence immunoassay. C4G and PRO-C3 were measured in pretreatment serum from metastatic melanoma patients (n = 54). The C4G assay was found specific for a granzyme B-generated neo-epitope on type IV collagen. The objective response rate (ORR) was 2.6-fold higher (18% vs. 7%) in patients with high C4G levels (>25th percentile) vs. low levels (≤25th percentile). Likewise, high C4G levels at baseline were associated with longer overall survival (OS) (log-rank, p = 0.040, and hazard ratio (HR) = 0.48, 95%CI: 0.24–0.98, p = 0.045). Combining high C4G with low PRO-C3 correlated with improved OS with a median OS of 796 days vs. 273 days (p = 0.0003) and an HR of 0.30 (95%CI: 0.15–0.60, p = 0.0006). In conclusion, these results suggest that high granzyme B degraded type IV collagen (C4G) combined with low PRO-C3 quantified non-invasively has the potential to identify the responders to ICI therapy.

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Immunotherapy in melanoma: Can we predict response to treatment with circulating biomarkers?;Pharmacology & Therapeutics;2024-04

2. Differential Protease Specificity by Collagenase as a Novel Approach to Serum Proteomics That Includes Identification of Extracellular Matrix Proteins without Enrichment;Journal of the American Society for Mass Spectrometry;2024-02-08

3. The roles of collagens and fibroblasts in cancer;Biochemistry of Collagens, Laminins and Elastin;2024

4. Type IV collagen;Biochemistry of Collagens, Laminins and Elastin;2024

5. Collagen biomarkers of chronic diseases;Biochemistry of Collagens, Laminins and Elastin;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3