A Novel and Automated Approach to Classify Radiation Induced Lung Tissue Damage on CT Scans

Author:

Szmul Adam,Chandy Edward,Veiga CatarinaORCID,Jacob Joseph,Stavropoulou Alkisti,Landau David,Hiley Crispin T.,McClelland Jamie R.

Abstract

Radiation-induced lung damage (RILD) is a common side effect of radiotherapy (RT). The ability to automatically segment, classify, and quantify different types of lung parenchymal change is essential to uncover underlying patterns of RILD and their evolution over time. A RILD dedicated tissue classification system was developed to describe lung parenchymal tissue changes on a voxel-wise level. The classification system was automated for segmentation of five lung tissue classes on computed tomography (CT) scans that described incrementally increasing tissue density, ranging from normal lung (Class 1) to consolidation (Class 5). For ground truth data generation, we employed a two-stage data annotation approach, akin to active learning. Manual segmentation was used to train a stage one auto-segmentation method. These results were manually refined and used to train the stage two auto-segmentation algorithm. The stage two auto-segmentation algorithm was an ensemble of six 2D Unets using different loss functions and numbers of input channels. The development dataset used in this study consisted of 40 cases, each with a pre-radiotherapy, 3-, 6-, 12-, and 24-month follow-up CT scans (n = 200 CT scans). The method was assessed on a hold-out test dataset of 6 cases (n = 30 CT scans). The global Dice score coefficients (DSC) achieved for each tissue class were: Class (1) 99% and 98%, Class (2) 71% and 44%, Class (3) 56% and 26%, Class (4) 79% and 47%, and Class (5) 96% and 92%, for development and test subsets, respectively. The lowest values for the test subsets were caused by imaging artefacts or reflected subgroups that occurred infrequently and with smaller overall parenchymal volumes. We performed qualitative evaluation on the test dataset presenting manual and auto-segmentation to a blinded independent radiologist to rate them as ‘acceptable’, ‘minor disagreement’ or ‘major disagreement’. The auto-segmentation ratings were similar to the manual segmentation, both having approximately 90% of cases rated as acceptable. The proposed framework for auto-segmentation of different lung tissue classes produces acceptable results in the majority of cases and has the potential to facilitate future large studies of RILD.

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3